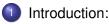
Gauge Symmetry Breaking—An Attempt to Clarify

Simon Friederich Fachbereich C – Naturwissenschaften und Mathematik Universität Wuppertal

21.11.2011 / Marseille


(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Motivation: What is gauge symmetry breaking?

- Received view: Spontaneous breaking of local gauge symmetry crucial for Higgs mechanism (but not uncontested).
- Interpretation of (gauge) symmetries and (gauge) symmetry breaking: central topic in the philosophy of science.
- Gauge symmetries: "purely formal" (Healey), no physical instantiations.
- "If gauge symmetry merely indicates descriptive redundancy in the mathematical formalism, it is not clear how spontaneously breaking a gauge symmetry could have any physical consequences, desirable or not." (Smeenk 2006)

Aim: Clarify status of SSB in gauge theories

Outline of the Presentation

2 Local Gauge Symmetry Breaking?

Philosophical Implications

< 同 > < ∃ >

SSB and symmetry breaking order parameters

- Basic idea of SSB: States need not have all the symmetries of the underlying "laws".
- Need infinitely many degrees of freedom.
- In quantum theories: Unitary inequivalence of representations associated with different symmetry breaking states.
- \Rightarrow Need "more than one" Hilbert space.
- If ⟨A⟩ ≠ ⟨α(A)⟩, then ⟨A⟩ is called a "symmetry breaking order parameter" for the symmetry α.

SSB and phases

- Liu and Emch (2005): SSB is a "natural phenomenon"...
- ... in contrast to mere "theoretical concepts" such as "renormalization" or "quantization".
- In which sense? Contrast between broken and unbroken symmetry corresponds to distinction between phases!
- Zero or nonzero value of $\langle A \rangle$ distinguishes the phases.

Gauge SSB

But what about gauge SSB in gauge theories?

- Does it exist? If so, in what sense?
- A gauge-dependent order parameter like $\langle \phi \rangle$ (Higgs field) is unobservable.
- So: Does the contrast between broken and unbroken gauge symmetry correspond to a contrast between phases?

< (□) < 三 > (□)

BEC as an example

Example of gauge SSB: Bose-Einstein condensation (BEC)

- Broken **global** gauge symmetry.
- Distinction between broken and unbroken symmetry lines up with phase transition.
- Macroscopic observables different in the two phases (e. g. compressibility, specific heat).

Local gauge symmetry: classical case

Consider, as an example,

$$\mathcal{L} = D_{\mu}\phi^* D^{\mu}\phi - V(\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}, \qquad (1)$$

with (Abelian) local U(1) gauge symmetry:

$$\phi(\mathbf{x}) \mapsto e^{i\alpha(\mathbf{x})}\phi(\mathbf{x}), \qquad A_{\mu}(\mathbf{x}) \mapsto A_{\mu}(\mathbf{x}) - \frac{1}{e}\partial_{\mu}\alpha(\mathbf{x})$$
 (2)

and potential:

$$V(\phi) = m_0^2 \phi^* \phi + \lambda_0 (\phi^* \phi)^2 , \qquad (3)$$

where $m_0^2 < 0$.

Classical ground states:

$$\phi(\mathbf{x}) = e^{i\theta(\mathbf{x})} \mathbf{v} / \sqrt{2} \tag{4}$$

 \Rightarrow SSB of local gauge symmetry.

(Wuppertal)

Unitary gauge

As an aside:

Writing $\phi(x) = e^{i\theta(x)}\rho(x)$ and implementing the unitary gauge

$$\theta(\mathbf{x}) = \mathbf{0} \tag{5}$$

(textbook expositions) eliminates the gauge freedom completely.

 \Rightarrow No SSB possible any more.

Arguably: Textbook exposition ("reshuffling of degrees of freedom") only useful to extract physical degrees of freedom, otherwise misleading.

(Wuppertal)	
-------------	--

Local gauge symmetry: Quantization

Generating functional:

$$W[\eta, J] = N \int \mathcal{D}\phi \mathcal{D}A_{\mu} \exp\left(i \int d^{4}x(\mathcal{L} + \eta\phi + J_{\mu}A^{\mu})\right).$$
 (6)

- The integral in Eq. (6) is "badly divergent".
- No perturbation expansion possible.
- Either: Quantize non-perturbatively on a lattice (Wilsonian formulation).
- Or: Fix the gauge.

< 回 > < 三 > < 三 >

Without gauge fixing

Elitzur's theorem:

Local gauge symmetry cannot be spontaneously broken. (Elitzur, 1975)

Crux of proof: Can't implement nonzero order parameter by fixing it on a finite volume boundary.

Reason: Gauge transformations depend on infinitely many parameters.

Generalization: Only gauge-invariant variables can have nonzero expectation values.

(Wuppertal)	
-------------	--

What about the electroweak phase transition?

According to common wisdom:

- Electroweak phase transition occurs in early universe,
- corresponds to spontaneous breakdown of local gauge symmetry,
- expectation value of the Higgs functions as order parameter.

Elitzur:

Must characterize phase transition differently, for instance through $\langle \phi^* \phi \rangle$:

"non-symmetry breaking order parameter", jumps at phase transition. See, for instance, (Buchmüller et al., 1994), "Gauge invariant treatment of the electroweak phase transition"

Gauge fixing

Roughly: Replace the action *S* in the functional integral $W[\eta, J]$ by an "effective action"

$$S_{eff} = S + S_{gf} + S_{ghost}$$
, (7)

where S_{gf} breaks local gauge invariance.

Post-gauge fixing global symmetries

 S_{gf} may either break local gauge invariance *completely* or not.

- If so: Only one configuration per gauge orbit compatible with gauge fixing condition.
- If not: *S_{gf}* still invariant under remnant **global** gauge symmetry. Examples:
 - Unitary gauge: $\theta(x) = 0$
 - Coulomb gauge, Landau gauge, temporal gauge,...

Remnant global gauge symmetries may break spontaneously.

But what does their breaking mean???

(Wu	pper	tal)

Post-gauge fixing global symmetries

 S_{gf} may either break local gauge invariance *completely* or not.

- If so: Only one configuration per gauge orbit compatible with gauge fixing condition.
- If not: *S_{gf}* still invariant under remnant **global** gauge symmetry. Examples:
 - Unitary gauge: $\theta(x) = 0$
 - Coulomb gauge, Landau gauge, temporal gauge,...

Remnant global gauge symmetries may break spontaneously.

But what does their breaking mean???

- ロ ト - (同 ト - (回 ト -) 回 ト -) 回

Global gauge SSB and phase transitions I

Question: Are these global gauge SSBs alwas associated with phase transitions?

Answer: No!

< ロ > < 同 > < 回 > < 回 >

Global gauge SSB and phase transitions II

Whether remnant global gauge symmetry is broken or unbroken depends on the gauge.

Example: Different unbroken/broken transitions in Landau gauge and Coulomb gauge for an SU(2)-Higgs model (Caudy and Greensite, 2008). Both don't generally coincide with phase transition (Fradkin and Shenker, 1978).

No rigid connection between phase transitions and global gauge SSBs.

 \Rightarrow Global gauge SSB is "ambiguous", **not** (in general) a "natural phenomenon'.

Kosso on epistemology of SSB

Kosso: Gauge symmetry breakings belong to the class of cases where "the relevant laws of nature are exactly symmetric, but the phenomena expressing these laws are not." (Kosso 2000)

Criticism:

- broken gauge symmetry: No asymmetry in observable phenomena (see Bose-Einstein condensation).
- in gauge theories: breaking of global subgroups is *ambiguous*.

Morrison on "vacuum hypotheses"

Morrison: "it would be folly to accept a robust physical interpretation of the SSB story." (Morrison 2003) Reasonable conclusion, but based on confused reasoning ("theoretical story about the nature of the vacuum"):

Criticism:

- Without gauge fixing: vacuum expectation value is zero (Elitzur).
- With gauge fixing: vacuum expectation value depends on the gauge and...
- ...especially, whether or not it is zero depends on the gauge.

Weinberg on "reality of gauge symmetries"

Weinberg: "if a gauge symmetry becomes unbroken for sufficiently high temperature, it becomes difficult to doubt its reality." (Weinberg 1978)

Whatever "reality" is supposed to mean:

- No evidence against standard view of gauge symmetries as purely formal!
- Gauge symmetry "restoration" depends on the gauge, is ambiguous.

 \Rightarrow In particular: no indication for "reality" of gauge symmetries in the sense of observability.